

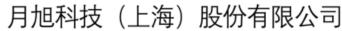
报告编号: 20230719-625

分离纯化报告

样品信息							
样品名称	XG-1	项目编号	20230719-625				
样品性状	白色固体	样品重量	/				
收样日期	2023/07/23	测试期间	2023/07/23-2023/07/26				
目标物信息							

客户分析图谱 1:

 目标物保留时间
 杂质: 25.25min API: 26.10min
 面积归一化含 杂质: 8.15% API: 91.5%


实验要求

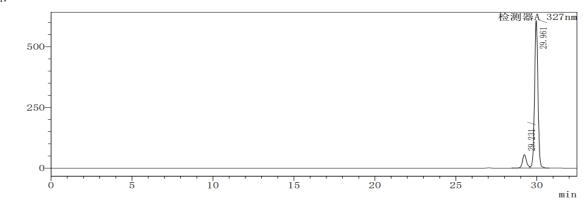
需要筛选色谱柱填料和方法,分离两个异构体,能在制备上能分开,纯化并收集 API 前面是杂质。

试剂信息							
试剂名称	供应商						
甲酸铵	AR	西亚试剂					
乙腈	色谱级	月旭					
三氟乙酸	AR	阿拉丁					
	仪器信息						
仪器名称	仪器型号	仪器厂家					
分析高效液相色谱仪	LC-20AD	岛津					
制备高效液相色谱仪	Welprep2000	月旭					

第1页共6页

报告编号: 20230719-625

1. 试验过程


1.1. 方法重现

称取样品 1.33mg, 置于 5mL 离心管中,加入 0.5ml 水+0.5ml 乙腈溶解,过滤至进样小瓶中,按照以下色谱分析方法进行分析:

色谱柱	Xtima	te Phenyl-Hexyl 4.6×250mm	m, 5μm			
流动相 A		100mM 甲酸铵+0.1%TFA				
流动相 B		色谱级甲醇				
流速		1ml/min				
进样量		5μl				
柱温		30°C				
检测波长		327nm				
	时间 (min)	流动相 A (%)	流动相 B (%)			
	0	45	55			
	25	25	75			
梯度洗脱程序	30	20	80			
	35	10	90			
	35.1	45	55			
	47	45	55			

分析图谱如图 2 所示:

<色谱图> mV

単一人と /						
检测器A 327nm						
化合物名	保留时间	面积	面积%	论塔板数(US	拖尾因子	分离度(USP)
	29. 231	967718	9.885	67674		
	29. 961	8822449	90. 115	98074	1.032	1. 754
		9790167	100 000			

图 2 方法重现图谱

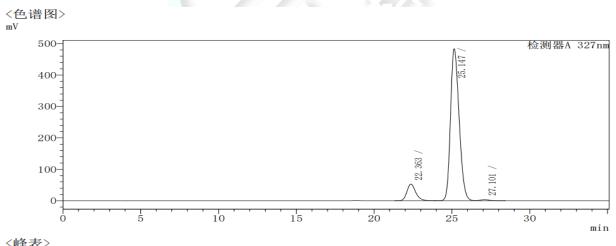
声明:除非另有说明,此报告结果仅对该测试样品负责。本报告未经公司许可,不可复制。Add:上海市松江区明南路 85 号启迪漕河泾(中山)科技园.紫荆园 10 号楼Add:浙江省金华市婺城区双林南街 168 号Add:江苏省南京市六合区天圣路 22 号 F 栋 4 楼

邮编: 201600 邮编: 321000 邮编: 211500

Tel:400-810-6969

报告编号: 20230719-625

结论:通过与图 1 进行比较,保留时间 29.2min 为目标杂质,保留时间为 29.96min 为 API。


1.2. 分离纯化过程

1.2.1. 方法开发

取 1.1 项下样品,按照以下色谱分析方法进行分析:

THE STATE OF THE S					
色谱柱	Ultima	1, 5μm			
流动相 A					
流动相 B					
流速	0.8ml/min 5μl 30°C				
进样量					
柱温					
检测波长		327nm			
	时间 (min)	流动相 A (%)	流动相 B (%)		
梯度洗脱程序	0	30	70		
	40	30	70		

分析图谱如下图 3 所示:

い手もと						
检测器A 327nm						
化合物名	保留时间	面积	面积%	论塔板数(US	拖尾因子	分离度(USP)
	22. 363	2088212	10.002	7859	1. 235	
	25. 147	18639997	89. 285	9761	1. 232	2. 747
	27. 101	148747	0.712	9437		1. 831
		20876956	100.000			

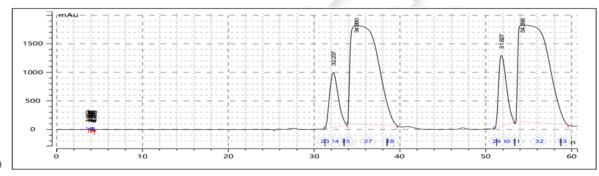
结论:由图可见,两目标物优化最佳分离度 2.7。

1.2.2. 样品制备

取 6mg 样品,用 1ml 乙腈+5ml 水溶解,过滤至进样小瓶中,取约 4mg 即 4ml,分两次每次

第3页共6页

邮编: 201600 邮编: 321000 邮编: 211500



报告编号: 20230719-625

2ml, 间隔 20min, 等量进样,按照以下色谱方法进行制备:

色谱柱	Ultimate XB-Phenyl 10×250mm, 5μm				
流动相 A		100mM 甲酸铵+0.1%TFA			
流动相 B		色谱级甲醇			
流速	4ml/min				
进样量	4mg(分两次循环进)				
柱温	室温				
检测波长		327nm			
	时间 (min)	流动相 A (%)	流动相 B (%)		
梯度洗脱程序	0	100	0		
	80	100	0		

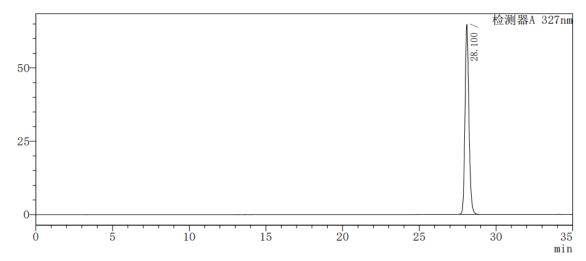
制备图谱如图 4 所示:

峰列	表							
No	名称	保留时间 (min)	峰面积 (mAu*s)	峰宽 (min)	半峰宽 (min)	峰高 (mAu)	面积百分比 (%)	峰类型
1	N.A.	3.662	75.416	0.160	0.104	12.138	0.008	BB
2	N.A.	3.837	195.429	0.192	0.128	26.159	0.021	BB
3	N.A.	3.967	18.576	0.052	0.032	9.655	0.002	BB
4	N.A.	4.038	22.164	0.092	0.060	6.196	0.002	BB
5	N.A.	4.183	6.427	0.054	0.034	3.097	0.001	BB
6	N.A.	4.250	6.530	0.072	0.044	2.494	0.001	BB
7	N.A.	4.370	19.273	0.040	0.035	4.946	0.002	BB
8	N.A.	4.490	106.539	0.111	0.074	22.402	0.011	BB
9	N.A.	32.237	67621.154	1.790	1.124	962.866	7.216	BB*
10	N.A.	34.980	382571.269	4.943	3.689	1728.99 7	40.823	BB*

经过制备,将目标馏分分别收集到洁净干燥的馏分收集瓶中。

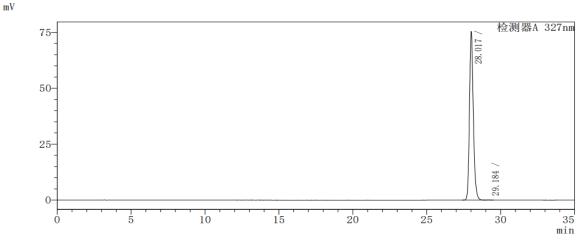
1.2.3. 杂质分析

将 1.2.2 中馏分 24 和馏分 30 分别进行液相色谱分析,具体分析条件同"步骤 1.1"一致。分析图谱 如图 5,图 6 所示:


第4页共6页

Welch _{月旭科技}

报告编号: 20230719-625



〈峰表〉

检测器A 327nm						
化合物名	保留时间	面积	面积%	沦塔板数(US	拖尾因子	分离度(USP)
	28. 100	1149983	100.000	58663	1. 174	
		1149983	100, 000			

图 5 制备液 24 分析图谱

〈色谱图〉

〈峰表〉

检测器A 327nm						
化合物名	保留时间	面积	面积%	论塔板数(US	拖尾因子	分离度(USP)
	28.017	1354385	99.918	57782	1. 203	
	29. 184	1109	0.082	90958		2. 735
		1355494	100, 000			

图 6 制备液 30 分析图谱

结论:由图可见,制备液 24 面积归一化含量为 100%(327nm),制备液 30 面积归一化含量为 99.9%(327nm)纯度符合客户要求。

第5页共6页

邮编: 201600

邮编: 321000 邮编: 211500

报告编号: 20230719-625

2. 结论

使用月旭 Ultimate XB-Phenyl(10×250mm, 5μm)在此色谱条件下进行制备,上样量 2mg,循环进样制备,可以将两个物质完全分开,并一次满足客户纯度要求。

报告人: Ada

审核人: Jim

日 期: 2023.07.27

第6页共6页

邮编: 201600 邮编: 321000 邮编: 211500